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In this study, the self-consisted scheme is generalized to predict the thermal conductivity of nanofluids
containing spherical nanoparticles with a conductive interface. We assume a flux jump in the particle–
fluid interface in the opposite to the assumption for temperature jump in the case of thermal barrier
resistance. We have obtained an upper and lower bounds to the homogenized suspension thermal
conductivity according to the particle packing, which is particle surface state dependent. A comparison
with the Hashin–Shtrikman bounds and the Maxwell equation is made. The proposed model is evaluated
using published experimental data of the thermal conductivity enhancement for different nanofluids.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Nanofluids are colloidal fluidic systems containing nanosized
particles at low volume fractions. They show unusually high
thermal conductivities if prepared in a stable manner. The role of
the particle interface concerning in thermal conductivity
enhancement seems to be very important. There are different
physical explanations related to the interfacial behaviour.

For suspensions at rest, the additional surface conductance has
been studied by Rubio-Hernándes et al. [1]. They claim that
a dynamic Stern layer based on the adsorbed ionic spaces on the
particle surface may be responsible for viscosity effects in nano-
suspensions and thus for the thermal conductivity behaviour.

Photon correlation spectroscopy has been employed by Bouclé
et al. [2] to characterize various SiC suspensions, through the
hydrodynamic diameters of particles in solution. These observa-
tions point out the key role played by the particle surface state,
mainly dependant on the C/Si ratio and the polymeric dispersant.

Experimental data on the thermal conductivity enhancement of
nanofluids from literature Zhang et al. [3] show an astonishing
spectrum of results. A variety of theoretical models by Wang and
Mujumder [4] try to explain the various experimental results.
Because of the variety of data trends, there is always one data set
son SAS. All rights reserved.
which can be found to substantiate one model or another. These
models often contain different parameters for which a reasonable
measuring procedure does not exist. In this work we propose
a model which takes into account the particle interface state. This
model contains measurable parameters with physical meaning and
gives the possibility to determine upper and lower bounds of the
suspension thermal conductivity enhancement as a function of the
particle concentration.
2. General framework

According to the traditional self-consistent scheme (SCS) [5]
assuming noninteraction between inclusions, a spherical inclusion
of radius a is embedded in a concentric sphere matrix material of
radius b, which is embedded in an infinite effective medium pos-
sessing the unknown effective thermal conductivity keff. The ratio
of the radii a/b relates the volume fraction of particles by f¼ (a/b)3.
The steady-state conduction equations of a particulate composite
can be written as [5,6]

V2Tp ¼ 0; if 0 � r � a;

V2Tf ¼ 0; if a � r � b;

V2Teff ¼ 0; if b � r < N: ð1Þ

Here Tp, Tf, Teff are the temperature fields in the particles, the bulk
fluid and in the effective area respectively; r is the radius variable in
the spherical coordinate system (r, q, 4).
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Nomenclature

a spherical inclusion radius, m
b radius of the concentric sphere matrix material, m
Ap, Af unknown parameters, K m�1

Bf, Beff unknown parameters, K m�2

f volume fraction of particles, –
fmax maximal particle packing, –
h thermal barrier resistance parameter, W m�2 K�1

keff effective thermal conductivity, W m�1 K�1

kf, kp thermal conductivities of the bulk fluid and the
particles, W m�1 K�1

km matrix conductivity, W m�1 K�1

k flux discontinuity parameter, –
Dq(r¼ a) heat flux jump at the interface, W m�2

qeff(N) heat flux at large distance from the particle, W m�2

r current radius, m
Tp, Tf, Teff temperature fields, K

Greek symbols
a thermal conductivity ratio particle/base fluid

(or matrix), –
b¼VTeff,Ntemperature gradient at large distance away from

the particle, W m�1

l phonon (electron) mean free path, m
q, 4 angles of the spherical coordinate system, rad
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To take into account the thermal barrier resistance, the authors
in [6] and [7] assume a temperature jump between the inclusion
and the matrix. We now assume, as proposed by Nan [7], a flux
jump between the inclusion and the matrix. Thus, we take into
account the so called thermal conductive interface (opposite to the
thermal resistant interface), which can be related to the ordered
liquid molecules at the interface possessing greater conductivity
than the bulk liquid, or to the adsorbed ionic species at the particle
surface, or to the hydrodynamic diameter of particles in solution
due to the double solvation layers [2].

It is important to say that we do not consider the interfacial layer
as a separate component in the suspension as the authors in [8]
have made. Thus, we can take into account different physical
reasons for the enhanced interface conduction. Now, the boundary
conditions at the interfaces can be written as

Tp ¼ Tf at r ¼ a; (2.1)

kf VTf ¼ kpVTp þ k$keff b at r ¼ a; (2.2)

Tf ¼ Teff at r ¼ b; (3.1)

kf VTf ¼ keff VTeff at r ¼ b; (3.2)

where kf, kp, keff are the thermal conductivities of the bulk fluid, the
nanoparticles and the effective medium respectively; k is a nondi-
mensional flux discontinuity parameter which will be estimated
later; a¼ kp/kf is the thermal conductivity ratio particle/base fluid;
b¼VTeff,N is the temperature gradient at large distance away from
the particle.

The relations in equations (2.1) and (3.1) express the tempera-
ture continuity across the interfaces, the relation in equation (3.2)
expresses the heat flux continuity, while the relation in equation
(2.2) expresses the heat flux jump (discontinuity) across the
particle–matrix interface, which is taken to be proportional to the
temperature gradient at large distances away from the particle. In
the case of perfect particle/fluid contact the continuum mechanics
involves a flux continuity across this interface. To take into account
the enhanced conductivity of a negligible thin region surrounding
the particle, at this interface we assume energy production in an
other (small) scale, due to chemical reactions related for example
with the suspension pH. In other words the interfacial thermal
contact conductance in a composite can arise from an intensive
chemical adherence at the interface. In the case of perfect contact
between particle and matrix (without thermal conductive inter-
face) the parameter k should be zero.

The temperature field solutions are taken in the form proposed
by Leong et al. [9] and Tihonov and Samarskii [10]

Tp ¼ Apr cos q; 0 � r � a; (4.1)

Tf ¼
�

Af r þ Bf=r2
�

cos q; a � r � b; (4.2)

Teff ¼ br cos q; b � r < N: (4.3)

Here Ap, Af and Bf are the integration constants. Following [10], the
first equation concerns an internal problem, the second one an
intermediate problem and the third one an internal problem,
because of the limited particle concentration. The authors in [6]
have demonstrate that even using an intermediate representation
to the equation (4.3) Teff¼ (brþ Beff/r

2)cos q as usual [5], in the case
of discontinuity at the particle–matrix interface, the coefficient
Beff¼ 0.

Substitution of equations (4) into equations (3) becomes

a3Ap � a3Af � Bf ¼ 0;

a3kpAp � a3kf Af þ 2kf Bf ¼ �a3k$keff b;

b3Af þ Bf ¼ b3b;

b3kf Af � 2kf Bf ¼ b3keff b: ð5Þ

Equations (5) represent a linear system to obtain the unknown
parameters Ap, Af, Bf and the effective thermal conductivity keff.
After some algebraic transformations, solving the system (5) to the
relative effective thermal conductivity we can write

keff=kf ¼
2þ aþ 2ða� 1Þf

2þ a� ða� 1Þf � 3kaf
: (6)

The Maxwell equation to the relative effective conductivity of
two phase particulate composites can be expressed as follows [11]

keff=kf ¼
2þ aþ 2ða� 1Þf
2þ a� ða� 1Þf : (7)

It is obviously clear, that in the case of simple perfect contact
without interface (ordered fluid layer) conductivity k¼ 0. In this
case equations (6) and (7) coincide.

To obtain the flux discontinuity parameter k, we make the
following change. In equation (6) we replace f with the maximal
real particle packing fmax and keff/kf with the maximal possible
relative thermal conductivity enhancement a¼ kp/kf respectively.
Thus, after transformation we obtain

k ¼ ð1þ a� 2=aÞ ð1� fmaxÞ
3afmax

: (8)

The maximal packing fmax for different suspension morphol-
ogies are well known and can be found in Nielsen [12]. Theoreti-
cally the maximum value of fmax is 0.7405 for spheres in hexagonal
close packing, but in practice fmax should be closer to 0.6370
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Fig. 2. Flux discontinuity parameter k(fmax) for Al2O3 & water. a¼ 69.
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(random close). The minimal value of fmax should be equal to 0.5236
(simple cubic). Practically fmax varies with particle shape and state
of agglomeration. Except in a few cases, it is difficult to predict the
kind of the particle packing from theory, so an experimental
method such as sedimentation volume can be used. Agglomerates
and nonspherical particles generally have smaller fmax than spheres
[12]. On the other hand the particle surface state (the interface
behaviour) may be in part responsible for the suspension
morphology. Moreover, from equation (8) we can obtain the
following results as limit cases (a / 1 and a / N)

k ¼ 0; (9.1)

and

k ¼ 1� fmax

3fmax
: (9.2)

The first result indicates that in the case of a small difference
between the inclusion and bulk fluid suspension, conductivities
obey the Maxwell equation (7). From equation (2.2), we have
Dq(r¼ a)¼ kqeff(N). Making the assumption that the heat flux
jump at the interface, Dq(r¼ a), do not exceed the heat flux at
a large distance, qeff(N), we obviously should have k¼ 1. Now, from
equation (9.2) to the maximal packing value we obtain fmax¼ 0.25.
Thus, practically for real nanosuspensions we can write

0:25 � fmax � 0:637: (10)

Using the inequality (10), our equations (6) and (8) form upper and
lower bounds to the thermal conductivity enhancement of nano-
suspensions. As one can see, these bounds are able to describe the
experimental results obtained by the researchers and are closer
than the Hashin–Shtrikman ones employed by Keblinski et al [13].
Fig. 1 illustrates the flux discontinuity parameter k as a function of
the thermal conductivity ratio a¼ kp/kf, (particle to base fluid), for
two maximal packings. Fig. 2 illustrates the same parameter as
a function of the maximal particle packing fmax for a¼ 69. Both
figures concern aluminium oxide particles in water according to the
inequality limits in equation (10). The respective theoretical curves
in both figures are plotted according to equation (8).
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Fig. 1. Flux discontinuity parameter k(a). Continuous line fmax¼ 0.3, dashed line
fmax¼ 0.4.
One can see that k remains practically independent from the
thermal conductivity ratio a, which for nanosuspensions is greater
than 50. On the other hand, this parameter is strongly dependent
from the maximal particle packing (the suspension morphology).

Using a similar SCS approach Lee et al. [6] have obtained an
equation (see below) concerning the thermal conductivity of
composites assuming a temperature jump at the particle–matrix
interface. Thus, they predict the homogenized conductivity for
composites with a thermal barrier resistance at the interface. A
modification of the Maxwell theory developed by Hasselman and
Johnson [14] obtains the same expression. Both expressions can be
written in the following form, which is easily comparable with our
results,

keff=kf ¼
2þ aþ 2ða� 1Þf þ 2að1� f ÞKm=ah

2þ a� ða� 1Þf þ að2þ f ÞKm=ah
: (11)

Here km is the matrix conductivity, corresponding to kf in our
equations, a¼ kp/kf and h is the thermal barrier resistance param-
eter. For h / N one obtains the Maxwell equation (7). Equations
(6), (8) and (11) on the other hand are compared in Fig. 3. Note that
our equations (6) and (8) for k / 0 also coincide with Maxwell’s.
Thus, the Maxwell equation is the upper limit for the Hasselman–
Lee equation (11) in the case of perfect interfacial contact.
Conversely, the lower limit of our equations (6) and (8) can be
obtained with fmax¼ 0.637, corresponding to the random close
packing, which seems to be the maximal possible limit; the lower
limits do not coincide with the Maxwell equation – see Figs. 4–6. If
we deal with micro particles, fmax can be even greater (close to 1 in
the case of multi sized particle distribution as discussed by Hashin
[5]), and the Maxwell prediction can be reached.

Remark: The general opinion about the particle size influence on
the nanosuspensions thermal conductivity is that the conductivity
increases with decreasing the size [15]. Equations (6) and (8) do not
take into account the particle size directly. According to Xie et al.
[16] there are two size factors responsible for the thermal
conductivity enhancement. First, heat transfer between the particle
and the fluid takes place at the particle–fluid interface. Reduction in
particle size can result in a large interfacial area. Second, the
phonon (electron) mean free path l for nonmetallic (metallic)
inclusions, in the case of small particles, can be comparable to the
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Fig. 3. Relative thermal conductivity enhancement for a¼ 100. Thick continuous line –
fmax¼ 0.25, dashed line – fmax¼ 0.637; both lines – equations (6) and(8). Dotted line –
Maxwell equation (7). Thin lines: equation (11). km/ah¼ 20 – lower line, km/ah¼ 0.4 – upper
line.
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Fig. 4. Relative thermal conductivity enhancement for Al2O3 in EG. Continuous line –
upper bound for fmax¼ 0.25, dashed line – lower one for fmax¼ 0.637; both lines from
equations (6) and (8); dotted line – Maxwell equation (7). Experimental data – Kabelac
and Kuhnke [19].
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size of the particles (for aluminium oxide and cuprum oxide, l is
estimated to be around 35 nm [17]). The intrinsic conductivity of
the particle may be reduced due to the scattering of the primary
carriers of energy at the particle boundary. In this second case, the
conductivity will be reduced with an increase in the particle
surface. Therefore, for a suspension with particle sizes greater than
the phonon (electron) mean free path, the conductivity increases
when the particle size decreases (the first factor is dominant).
Reciprocally, when the particle size is smaller than the mean free
path, the second factor would govern the mechanism of the
suspension conductivity. But in the last case (very small particles)
the Brownian motion induced convection plays an important role
and enhances the nanosuspensions conductivity [18]. Thus explains
the seemingly contradictory experimental results as indicated by
Kabelac and Kuhnke [19]. Our model takes into account the particle
size via the maximal packing, which is size distribution dependent.

3. Experimental comparisons

Here we compare the predictions of our model, according to
equations (6) and (8), with the experimental data from many
authors systematized by Kabelac and Kuhnke [19]. A comparison
between our equations (6) and (8) and the Hasselman–Lee model,
equation (11), is illustrated for thermal conductivity ratio a¼ kp/
kf¼ 100 in Fig. 3. The conductivity enhancement according to our
model with fmax¼ 0.25, 0.637 and the Maxwell equation (7) are
plotted with continuous, dashed and dotted lines respectively. In
this figure, we illustrate also equation (11) with thin lines for two
different values of the thermal barrier resistance parameter h as
mentioned in Fig. 3.

Experimental values for ethylene glycol (EG) with aluminium
oxide (Al2O3) nanoparticles from different authors are plotted with
different symbols from [19] in Fig. 4. Our upper and lower bounds
according to equations (6) and (8) together with (10) are also
plotted.

In Figs. 5 and 6 we compare our model (continuous lines)
predictions with experimental data for Al2O3 and cuprum oxide
(CuO) particles in water respectively, systematized by Kabelac and
Kuhnke [19]. In Fig. 5 we have plotted the Hashin–Shtrikman (H.S.)
bounds [5]. The lower H.S. bound coincides with the Maxwell
equation. One can see that our bounds are closer to the experi-
mental results. The same conclusion concerning the H.S. bounds
can be made if we put them in Figs. 4 and 6. Note that in [13]
Keblinski has demonstrated that the H.S. bounds are large to well
describe the experimental results.

In Figs. 4–6 experimental data are plotted with different
symbols from different authors.

In Figs. 3–6 the lower dotted line corresponds to the classical
Maxwell model – equation (7). From these figures one can see that
all experimental data take place between our bounds. Strictly
speaking in the case of large size particle distribution, fmax can be
greater than 0.637 and stay closer to 1 which transforms our model
into the Maxwell one.

Moreover, recently in the case of small particles, Chen et al. in
[20] have used small angle X-ray scattering to characterize the
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Fig. 5. Al2O3 particles in water. Upper line – fmax¼ 0.25, lower line – fmax¼ 0.637.
Dotted lines – upper and lower H.S. bounds. The lower one coincides with the Maxwell
equation (7). Experimental data – Kabelac and Kuhnke [19].
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Fig. 6. CuO particles in water. Upper line – fmax¼ 0.25, lower line – fmax¼ 0.637. Dotted
line – Maxwell equation (7). Experimental data – Kabelac and Kuhnke [19].
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particle size in silica nanofluids. It was found that the particles in
these fluids are monodispersed with average sizes between 10 and
30 nm (shorter than the phonon mean free path). Thermal
conductivity measurements of 16 vol.% nanofluids with different
sizes show a linear increase with increasing particle size. This result
contradicts theoretical models based on fluid interfacial layer or
Brownian motion because these models do not take into account
the inclusion mean free path limit discussed above and the influ-
ence of the particle interface state.

Maximal conductivity enhancement can be expected if the
average particle size is equal or smaller than l and the particle size
distribution possesses a lower standard deviation (particles with
similar sizes). In this case (2a� l), fmax reaches its minimal value of
0.25. If 2a [ l and the size deviation becomes larger (particles
with different sizes as the SCS assumes to obtain the Maxwell
equation), then fmax reaches its maximal value 0.637 or eventually
a greater value if the particle size distribution is very large and
a greater packing is possible. If 2a� l, fmax becomes greater, but
due to the Brownian motion, which in this case (very small parti-
cles) can not be neglected, we should not expect an essential
reduction of the suspension thermal conductivity.

Clustering can also decrease the maximal packing and enhance
the conductivity [21]. Increasing difference of the pH values
between suspension and particles isoelectric point increase the
repulsive hydration forces among particle [15] and thus decrease
the fmax. The experimental results from many authors, systematized
by Kabelac and Kuhnke [19], are in good agreement with our model
predictions. A slight nonlinearity is observed in the theoretical
thermal conductivity enhancement with respect to particle volume
fraction, even with small concentrations.
4. Conclusions

As one can see, the present model assumes a flux discontinuity
at the phase interface due to the ordered fluid molecules at the
particle–fluid border. Thus, the model proposed takes into account
the enhanced conductivity of the interfacial layer without including
the thermal conductivity and thickness of this thin layer. The
suspension thermal conductivity is morphology dependent via the
kind of particle packing. This packing depends on the particle
surface state and size distribution. The limits of this packing
parameter involve an upper and lower bounds of the effective
suspension thermal conductivity. The experimental comparisons
show that the proposed model well describes the limits of the
conductivity enhancement with respect to the particle volume
fraction for different nanosuspensions. In a consecutive work we
will examine how the particle size distribution and suspension pH
influence the nanofluid morphology via the maximal packing fmax.
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